Enabling Next Generation Modeling and Simulations in Biology Pratul K. Agarwal, Sadaf R. Alam, Jeff S. Vetter (CSMD) Ed Uberbacher (LSD) and Dean A. A. Myles (CSD) Oak Ridge National Laboratory #### Multi-disciplinary Infrastructure for Next Generation Modeling and Simulations - Data collection from SNS/HFIR - Simulations on NLCF machines with teraFLOP power - Visualization on EVEREST and data storage on HPSS ## **Significance** - computational genomics - database design and enhancement - molecular modeling and simulation - analysis of complex biological systems - cell modeling - biomedical software development - high-throughput data analysis Detailed biophysical characterization of molecular machines, protein structure prediction, docking and others Multi-scale modeling – Structure, Dynamics and Function Desired/Current capability Ratio: 10⁴-10⁶ #### Function #### **Enzyme RuBisCO** - Plays a role in Carbon sequestration - The enzyme activity is at the order of (10⁰) seconds - Very large enzyme - Multi-scale modeling needed #### **Biological Membranes** - Many cellular functions including transport, signaling and cellular interactions - Computational modeling and simulations will have broad impact - In combination with neutron and X-ray scattering, modeling and simulations will provide valuable insights ## Porting and optimizing popular MM and QM codes in biology to NLCF machines - Cray X1/X1E 1024 MSP 18 teraFLOP/s - Cray XT3 - June 2005: 3600 CPUs ~17 teraFLOP/s - July 2005: 5212 CPUs ~25 teraFLOP/s - 200?: 11,374 CPUs ~50 teraFLOP/s - 200?: 22,748 CPUs ~100 teraFLOP/s - Popular molecular mechanics (MM) packages - AMBER, CHARMM, LAMMPS, NAMD, GROMACS - Quantum-mechanical (QM) for detailed modeling - GAMESS, NWChem - AMBER: Cheetah Supercomputer - speed up ~4 on 8 CPUs & ~8 on 32 CPUs - limit of maximum128 processors #### Scaling the MD Kernel $$\begin{split} V(\mathbf{r}^N) &= \sum\limits_{bonds} \frac{k_i}{2} (l_i - l_{i,0})^2 + \sum\limits_{angles} \frac{k_i}{2} (\theta_i - \theta_{i,0})^2 \\ &+ \sum\limits_{torsions} \frac{V_n}{2} (1 + cos(n\omega - \gamma)) \\ &+ \sum\limits_{i=1}^{N} \sum\limits_{j=i+1}^{N} \left(4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}} \right) \end{split}$$ Evaluations of non-bonded interactions most compute intensive part of MD: 80-90% of runtime! #### Particle-mesh Ewald (PME) method ## **Preliminary Performance Analysis** - AMBER scaled beyond 128 processors - -1024 nodes on IBM BG/L - 4096 nodes on Cray XT3 - Application profiling: identified code blocks and communication patterns that limit the scalability LAMMPS – highly scalable MD engine #### Time-line for scaling on NLCF machines ### Preliminary work: Scaling studies - Molecular dynamics: AMBER (v 8) sander module - Solvated enzyme-DNA complex with about 60,000 atoms ## Preliminary work: Scaling studies - LAMMPS with AMBER force-field - Explicit solvent - 30 days 200 ns! - ~300K atoms! - 16,000 processors on IBM Blue Gene/L ## Hybrid QM/MM methodology for simulating enzyme catalysis - Accurate treatment of long range electrostatics and dynamics - Multi-scale protein dynamics: Novel ways to detect reaction coupled vibrational modes - Explicit solvent: solvent-protein dynamics coupling #### **Multi-scale modeling** - Enzyme kinetics: Transition state theory - Multi-scale protein dynamics: GNM, QHA, TANCA - Fast time-scales (picosecond-microsecond) - Mechanistic insights: local structure and long range effects - The effect of dynamical effects on free energy, individual residues (mutants) - Effect on barrier height and transmission coefficient - Vibrational mode driven reactions # Interfacing with visualization facility and data storage - Visualization of biological data is critical for fast interpretation and analysis of large data sets - Network of protein vibrations identified using EVEREST - Interface experimental and computational facilities with EVEREST: model low as well as high resolution data ### Multi-scale modeling: Cellulose degradation #### System of energy research (DOE) interest - Renewable energy: ethanol production from cellulose - Detailed understanding of cellulase enzyme mechanisms from multi-scale modeling - 1-100 ns trajectories for systems with over 800,000 atoms - Simulations with different substrates and mutant enzymes - Creation of more efficient enzymes for cellulose degradation through protein engineering ## Multi-scale modeling: Enzyme Cyclophilin A System of medical interest - Enzyme cyclophilin A plays a role in many cellular function including protein folding and transport - Required for infectious activity of HIV-1 - Link between enzyme structure, dynamics and function - Multi-scale modeling lead to identification of Network of protein dynamics promoting enzyme catalysis - Computational finding verified experimentally #### Interfacing simulations with experiments Include data from a variety of experimental techniques into simulations - better models Neutron and X-ray scattering - RuBisCO - models of membrane systems - structure, dynamics and function of biomolecular complexes α-subunit β-subunit γ-subunit Cytoplasm Refining low resolution data through modeling & simulations ## **Summary** - Next Generation Modeling and Simulations - Integrate ORNL's experimental, computing and visualization facilities - Biophysical characterization of molecular machines through multi-scale modeling - Impact Chemistry and Materials/Nanotechnology ## Acknowledgements - Thomas Zacharia - Jeff Nichols - Al Geist - Buddy Bland - DOE - NCCS